Skip to main content

Section 2.8 Practice Gateway Exam 8

The use of calculators or any computer algebra system is not permitted on this test. No partial credit will be awarded. A score of at least 7 correct is required to pass this gateway.

Compute each of the following integrals.

Exercises Exercises

1.

(3x4+1x+23x)dx

Solution.
(3x4+1x+23x)dx=(3x4+x1/2+23x)dx=3x55+x1/21/2+131ln(2)23x+C=35x5+2x+23x3ln(2)+C

2.

t2e2tdt

Solution.

Use integration by parts with

u=t2dv=e2tdtdu=2tdtv=12e2t

Then

t2e2tdt=t212e2t12e2t2tdt=12t2e2tte2tdt

We now use integration by parts again on the new integral.

u=tdv=e2tdtdu=1dtv=12e2t

So

t2e2tdt=12t2e2t(t12e2t12e2tdt)=12t2e2t12te2t+1212e2t+C

3.

5x2(x3+4)12dx

Solution.

Use substitution with u=x3+4 and du=3x2dx, so 13du=x2dx

5x2(x3+4)12dx=513u12du=53u1313+C=539(x3+4)13+C

4.

x(x2)(x3)dx

Solution.

First decompose the integrand into partial fractions:

x(x2)(x3)=Ax2+Bx3

This yields

x=A(x3)+B(x2).

Plug in x=2 to solve for A and x=3 to solve for B:

2=A+0A=2
3=0+BB=3

Now perform the integration:

x(x2)(x3)dx=(2x2+3x3)dx=2ln|x2|+3ln|x3|+C

5.

sin(θ)cos(θ)dθ

Solution.

Use substitution with u=cos(θ) and du=sin(θ)dθ, so du=sin(θ)dθ:

sin(θ)cos(θ)dθ=1udu=ln|u|+C=ln|cos(θ)|+C

6.

x8ln(x)dx

Solution.

Use integration by parts with

u=ln(x)dv=x8dxdu=1xdxv=x99

Then

x8ln(x)dx=ln(x)x99x991xdx=19x9ln(x)19x8dx=19x9ln(x)1919x9+C

7.

3x+26x2+8x+5dx

Solution.

Use substitution with u=6x2+8x+5 and du=(12x+8)dx, so 14du=(3x+2)dx:

3x+26x2+8x+5dx=141udu=14ln|u|+C=14ln|6x2+8x+5|+C

8.

7tcos(t2+5)dt

Solution.

Use substitution with u=t2+5 and du=2tdt, so 12du=tdt:

7tcos(t2+5)dt=712cos(u)du=72sin(u)+C=72sin(t2+5)+C