Skip to main content

Section 2.7 Practice Gateway Exam 7

The use of calculators or any computer algebra system is not permitted on this test. No partial credit will be awarded. A score of at least 7 correct is required to pass this gateway.

Compute each of the following integrals.

Exercises Exercises

1.

(x3+1x+e3x)dx

Solution.
(x3+1x+e3x)dx=x44+ln|x|+13e3x+C

2.

2xcos(3x)dx

Solution.

Use integration by parts with

u=2xdv=cos(3x)dxdu=2dxv=13sin(3x)

Then

2xcos(3x)dx=2x13sin(3x)213sin(3x)dx=23xsin(3x)2313cos(3x)+C=23xsin(3x)+29cos(3x)+C

3.

2x5+7xx3dx

Solution.
2x5+7xx3dx=(2x2+7x2)dx=2x33+7x11+C=23x37x1+C

4.

8(x2)(x+3)dx

Solution.

First decompose the integrand into partial fractions:

8(x2)(x+3)=Ax2+Bx+3

This yields

8=A(x+3)+B(x2).

Plug in x=2 to solve for A and x=3 to solve for B:

8=5A+0A=85
8=05BB=85

Now perform the integration:

8(x2)(x+3)dx=(851x2851x+3)=85ln|x2|85ln|x+3|+C

5.

sin(t)cos4(t)dt

Solution.

Use substitution with u=cos(t) and du=sin(t)dt, so du=sin(t)dt:

sin(t)cos4(t)dt=u4du=u55+C=15cos5(t)+C

6.

xln(4x)dx

Solution.

Use integration by parts with

u=ln(4x)dv=xdxdu=1xdxv=x22

Then

xln(4x)dx=ln(4x)x22x221xdx=12x2ln(4x)12xdx=12x2ln(4x)12x22+C

7.

x(121+x2)2dx

Solution.

Use substitution with u=121+x2 and du=2xdx, so 12du=xdx:

x(121+x2)2dx=12u2du=12u11+C=12(121+x2)1+C

8.

3wsin(5w2+1)dw

Solution.

Use substitution with u=5w2+1 and du=10wdw, so 110du=wdw:

3wsin(w2+1)dw=3110sin(u)du=310cos(u)+C=310cos(5w2+1)+C