Skip to main content

Section 2.6 Practice Gateway Exam 6

The use of calculators or any computer algebra system is not permitted on this test. No partial credit will be awarded. A score of at least 7 correct is required to pass this gateway.

Compute each of the following integrals.

Exercises Exercises

1.

\(\displaystyle \int (y^{-3} + 8e) \, dy \)

Solution.
\begin{align*} \int (y^{-3} + 8e) \, dy \amp = \frac{y^{-2}}{-2} + 8ey + C\\ \end{align*}

2.

\(\displaystyle \int xe^{2x} \, dx \)

Solution.

Use integration by parts with

\begin{align*} u \amp = x \amp dv \amp = e^{2x} \, dx\\ du \amp = 1 \, dx \amp v \amp = \dfrac{1}{2}e^{2x} \end{align*}

Then

\begin{align*} \int xe^{2x} \, dx \amp = x \cdot \frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x} \, dx\\ \amp = \frac{1}{2}xe^{2x} - \frac{1}{2} \cdot \frac{1}{2}e^{2x} + C \end{align*}

3.

\(\displaystyle \int \frac{x+3}{\sqrt{x^2+6x-11}} \, dx \)

Solution.

Use substitution with \(u= x^2+6x-11\) and \(du = (2x+6) \, dx\text{,}\) so \(\dfrac{1}{2} \, du = (x+3) \, dx\text{:}\)

\begin{align*} \int \frac{x+3}{\sqrt{x^2+6x-11}} \, dx \amp = \int \frac{1}{2} \frac{1}{\sqrt{u}} \, du\\ \amp = \frac{1}{2} \int u^{-1/2} \, du\\ \amp = \frac{1}{2} \cdot \frac{u^{1/2}}{1/2} + C\\ \amp = \sqrt{x^2+6x-11} + C \end{align*}

4.

\(\displaystyle \int z\cos(\pi z^2) \, dz \)

Solution.

Use substitution with \(u= \pi z^2\) and \(du = 2\pi z \, dz\text{,}\) so \(\dfrac{1}{2\pi} \, du = z \, dz\text{:}\)

\begin{align*} \int z\cos(\pi z^2) \, dz \amp = \int \frac{1}{2\pi} \cos(u) \, du\\ \amp = \frac{1}{2\pi} \sin(u) + C\\ \amp = \frac{1}{2\pi} \sin(\pi z^2) + C \end{align*}

5.

\(\displaystyle \int \sin(5\theta)\cos(5\theta) \, d\theta \)

Solution.

Use substitution with \(u = \sin(5\theta)\) and \(du = 5\cos(5\theta) \, d\theta\text{,}\) so \(\dfrac{1}{5} \, du = \cos(5\theta) \, d\theta\text{:}\)

\begin{align*} \int \sin(5\theta)\cos(5\theta) \, d\theta \amp = \int \frac{1}{5} u \, du\\ \amp = \frac{1}{5} \frac{u^2}{2} + C\\ \amp = \frac{\sin^2(5\theta)}{10} + C \end{align*}

6.

\(\displaystyle \int \frac{x}{1+9x^2} \, dx \)

Solution.

Use substitution with \(u = 1+9x^2\) and \(du = 18x \, dx\text{,}\) so \(\dfrac{1}{18} \, du = x \, dx\text{:}\)

\begin{align*} \int \frac{x}{1+9x^2} \, dx \amp = \int \frac{1}{18} \frac{1}{u} \, du\\ \amp = \frac{1}{18} \ln|u| + C\\ \amp = \frac{1}{18} \ln|1+9x^2| + C \end{align*}

7.

\(\displaystyle \int t^2 \ln(t) \, dt \)

Solution.

Use integration by parts with

\begin{align*} u \amp = \ln(t) \amp dv \amp = t^2 \, dt\\ du \amp = \frac{1}{t} \, dt \amp v \amp = \frac{t^3}{3} \end{align*}

Then

\begin{align*} \int t^2 \ln(t) \, dt \amp = \ln(t) \cdot \frac{t^3}{3} - \int \frac{t^3}{3} \cdot \frac{1}{t} \, dt\\ \amp = \frac{1}{3} t^3 \ln(t) - \int \frac{1}{3} t^2 \, dt\\ \amp = \frac{1}{3} t^3 \ln(t) - \frac{1}{3} \cdot \frac{t^3}{3} + C \end{align*}

8.

\(\displaystyle \int \frac{1}{(x+2)(x-3)} \, dx \)

Solution.

First decompose the integrand into partial fractions:

\begin{equation*} \frac{1}{(x+2)(x-3)} = \frac{A}{x+2} + \frac{B}{x-3} \end{equation*}

This yields

\begin{equation*} 1 = A(x-3) + B(x+2)\text{.} \end{equation*}

Plug in \(x=-2\) to solve for \(A\) and \(x=3\) to solve for \(B\text{:}\)

\begin{equation*} 1 = -5A + 0 \implies A=-\frac{1}{5} \end{equation*}
\begin{equation*} 1 = 0 + 5B \implies B=\frac{1}{5} \end{equation*}

Now perform the integration:

\begin{align*} \int \frac{1}{(x+2)(x-3)} \, dx \amp = \int \left(-\frac{1}{5}\cdot \frac{1}{x+2} + \frac{1}{5} \cdot \frac{1}{x-3}\right) \, dx\\ \amp = -\frac{1}{5} \ln|x+2| +\frac{1}{5} \ln|x-3| + C \end{align*}