Skip to main content

Section 1.4 Practice Gateway Exam 4

The use of a calculator or any computer algebra system is not permitted on this test. No partial credit is available. A score of at least 7 correct is required to pass this gateway.

Find the derivative of each of the following functions:

Exercises Exercises

1.

\(f(x) = x^{6} + \dfrac{1}{\sqrt{x}}-100^{\pi}\)

Solution.
\begin{align*} f'(x) \amp = \frac{d}{dx}[x^6 + x^{-1/2} - 100^{\pi}]\\ \amp = 6x^5 - \frac{1}{2}x^{-3/2} \end{align*}

2.

\(g(x) = \cos^4(x^2+x)\)

Solution.
\begin{align*} g'(x) \amp = \frac{d}{dx}[(\cos(x^2+x))^4]\\ \amp = 4\cos^3(x^2+x) \cdot \frac{d}{dx}[\cos(x^2+x)]\\ \amp = 4\cos^3(x^2+x) \cdot -\sin(x^2+x) \cdot \frac{d}{dx}[x^2+x]\\ \amp = 4\cos^3(x^2+x) \cdot -\sin(x^2+x) \cdot (2x+1) \end{align*}

3.

\(r(x) = 3\sin(\ln(x))\)

Solution.
\begin{align*} r'(x) \amp = 3\cos(\ln(x))\cdot \frac{d}{dx}[\ln(x)]\\ \amp = 3\cos(\ln(x))\cdot \frac{1}{x} \end{align*}

4.

\(y = \dfrac{x^3+x}{x^2}\)

Solution.
\begin{align*} \frac{dy}{dx} \amp = \frac{d}{dx}[x+x^{-1}]\\ \amp = 1-x^{-2} \end{align*}

5.

\(f(x) = 2.1e^{\sin(x^2+1)}\)

Solution.
\begin{align*} f'(x) \amp = 2.1e^{\sin(x^2+1)}\cdot \frac{d}{dx}[\sin(x^2+1)]\\ \amp = 2.1e^{\sin(x^2+1)}\cdot \cos(x^2+1) \cdot \frac{d}{dx}[x^2+1]\\ \amp = 2.1e^{\sin(x^2+1)}\cdot \cos(x^2+1) \cdot 2x \end{align*}

6.

\(g(\theta) = \tan(\theta)\sin(\theta)\)

Solution.
\begin{align*} g'(\theta) \amp = \tan(\theta)\cdot \frac{d}{d\theta}[\sin(\theta)] + \sin(\theta) \cdot \frac{d}{d\theta}[\tan(\theta)]\\ \amp = \tan(\theta)\cdot \cos(\theta) +\sin(\theta) \cdot \sec^2(\theta) \end{align*}

7.

\(h(t) = \dfrac{t^3}{\cos(3t)}\)

Solution.
\begin{align*} h'(t) \amp = \frac{\cos(3t) \cdot \frac{d}{dt}[t^3] - t^3 \frac{d}{dt}[\cos(3t)]}{(\cos(3x))^2}\\ \amp = \frac{\cos(3t) \cdot 3t^2 - t^3 \cdot (-\sin(3t)) \cdot 3}{\cos^2(3t)} \end{align*}

8.

\(h(x) = 5\sin(4x+1)\)

Solution.
\begin{align*} h'(x) \amp = 5\cos(4x+1)\cdot \frac{d}{dx}[4x+1]\\ \amp = 5\cos(4x+1) \cdot 4 \end{align*}