Skip to main content

Section 1.6 Practice Gateway Exam 6

The use of a calculator or any computer algebra system is not permitted on this test. No partial credit is available. A score of at least 7 correct is required to pass this gateway.

Find the derivative of each of the following functions:

Exercises Exercises

1.

\(f(x) = 3x^{4} - x^{3.6} + \sqrt{12}\)

Solution.
\begin{align*} f'(x) \amp = 12x^3 - 3.6x^{2.6}\\ \end{align*}

2.

\(g(x) = \cos(2x) + 2 \sin(x)\)

Solution.
\begin{align*} g'(x) \amp = -\sin(2x) \cdot \frac{d}{dx}[2x] + 2\cos(x)\\ \amp = -\sin(2x) \cdot 2 + 2\cos(x) \end{align*}

3.

\(h(z) = 2e^z z^3\)

Solution.
\begin{align*} h'(z) \amp = 2e^z \cdot \frac{d}{dz}[z^3] + z^3 \cdot \frac{d}{dz}[2e^z]\\ \amp = 2e^z \cdot 3z^2 + z^3\cdot 2e^z \end{align*}

4.

\(y = \sqrt{x^3+e^2}\)

Solution.
\begin{align*} \frac{dy}{dx} \amp = \frac{d}{dx}[(x^3+e^2)^{1/2}]\\ \amp = \frac{1}{2} (x^3+e^2)^{-1/2}\cdot \frac{d}{dx}[x^3+e^2]\\ \amp = \frac{1}{2} (x^3+e^2)^{-1/2} \cdot 3x^2 \end{align*}

5.

\(s(t) = \ln(t^2+2.8)\)

Solution.
\begin{align*} s'(t) \amp = \frac{1}{t^2+2.8}\cdot \frac{d}{dt}[t^2+2.8]\\ \amp = \frac{1}{t^2+2.8} \cdot 2t \end{align*}

6.

\(m(t) = \dfrac{t-2}{e^t}\)

Solution.
\begin{align*} m'(t) \amp = \frac{e^t \cdot \frac{d}{dt}[t-2] - (t-2)\cdot \frac{d}{dt}[e^t]}{(e^t)^2}\\ \amp = \frac{e^t - (t-2)\cdot e^t}{e^{2t}} \end{align*}

7.

\(r(x) = e^{2.7x} + \dfrac{1}{x}\)

Solution.
\begin{align*} r'(x) \amp = \frac{d}{dx}[e^{2.7x} + x^{-1}]\\ \amp = e^{2.7x}\cdot \frac{d}{dx}[2.7x]-x^{-2}\\ \amp = e^{2.7x}\cdot 2.7 -x^{-2} \end{align*}

8.

\(y(x) = 2(6^x) - e^{\ln(x)}\)

Solution.
\begin{align*} y'(x) \amp = \frac{d}{dx}[2(6^x) - x]\\ \amp = 2\cdot \ln(6) \cdot 6^x - 1 \end{align*}