Skip to main content

Section 1.2 Practice Gateway Exam 2

The use of a calculator or any computer algebra system is not permitted on this test. No partial credit is available. A score of at least 7 correct is required to pass this gateway.

Find the derivative of each of the following functions:

Exercises Exercises

1.

\(f(x) = x^{16} + 2x + \dfrac{1}{x^4}-8e^2\)

Solution.
\begin{align*} f'(x) \amp = \frac{d}{dx}\left[ x^{16} +2x +x^{-4} -8e^2\right]\\ \amp = 16x^{15} + 2 -4x^{-5} \end{align*}

2.

\(y = (3x+\sin(x))e^{2x}\)

Solution.
\begin{align*} \frac{dy}{dx} \amp = (3x+\sin(x))\frac{d}{dx}[e^{2x}] + e^{2x} \frac{d}{dx}[3x+\sin(x)]\\ \amp = (3x+\sin(x))\cdot e^{2x} \cdot 2 + e^{2x}(3+\cos(x)) \end{align*}

3.

\(r(x) = \ln(\cos(x)) + \ln(e^x)\)

Solution.
\begin{align*} r'(x) \amp = \frac{d}{dx}[\ln(\cos(x)) + x]\\ \amp = \frac{1}{\cos(x)}\cdot \frac{d}{dx}[\cos(x)]+1\\ \amp = \frac{1}{\cos(x)} \cdot(-\sin(x))+1 \end{align*}

4.

\(f(t) = \arctan(t^2)\)

Solution.
\begin{align*} f'(t) \amp = \frac{1}{1+(t^2)^2} \cdot \frac{d}{dt}[t^2]\\ \amp = \frac{2t}{1+t^4} \end{align*}

5.

\(f(t) = \dfrac{t^2+2}{\sqrt{t}}\)

Solution.
\begin{align*} f'(t) \amp = \frac{d}{dt} \left[\frac{t^2}{\sqrt{t}} + \frac{2}{\sqrt{t}} \right]\\ \amp = \frac{d}{dt} \left[ t^{3/2} + 2t^{-1/2}\right]\\ \amp = \frac{3}{2}t^{1/2} + 2 \cdot \frac{-1}{2}t^{-3/2}\\ \amp = \frac{3}{2}t^{1/2} -t^{-3/2} \end{align*}

6.

\(g(x) = (e^x+12x)^{12}\)

Solution.
\begin{align*} g'(x) \amp = 12(e^x + 12x)^{11}\cdot \frac{d}{dx} [e^x + 12x]\\ \amp = 12(e^x + 12x)^{11} \cdot(e^x+12) \end{align*}

7.

\(h(t) = \cos^2(3t+5)\)

Solution.
\begin{align*} h'(t) \amp = \frac{d}{dt}[ (\cos(3t+5))^2]\\ \amp = 2\cos(3t+5) \cdot \frac{d}{dt}[ \cos(3t+5)]\\ \amp = 2\cos(3t+5) \cdot (-\sin(3t+5))\cdot 3 \end{align*}

8.

\(h(x) = 3^x \tan(x)\)

Solution.
\begin{align*} h'(x) \amp = 3^x \cdot \frac{d}{dx}[\tan(x)] + \tan(x) \cdot \frac{d}{dx}[3^x]\\ \amp = 3^x \cdot \sec^2(x) + \tan(x) \cdot \ln(3) \cdot 3^x \end{align*}