Skip to main content

Section 1.3 Practice Gateway Exam 3

The use of a calculator or any computer algebra system is not permitted on this test. No partial credit is available. A score of at least 7 correct is required to pass this gateway.

Find the derivative of each of the following functions:

Exercises Exercises

1.

\(f(x) = x^3+2\sqrt{x}+8\pi\)

Solution.
\begin{align*} f'(x) \amp = \frac{d}{dx} \left[ x^3 + 2x^{1/2} + 8 \pi \right]\\ \amp = 3x^2 + 2\cdot \frac{1}{2} x^{-1/2}\\ \amp = 3x^2 + x^{-1/2} \end{align*}

2.

\(g(x) = e^{2x^2-x}\)

Solution.
\begin{align*} g'(x) \amp = e^{2x^2-x} \cdot \frac{d}{dx}[2x^2-x]\\ \amp = e^{2x^2-x} \cdot (4x-1) \end{align*}

3.

\(r(x) = \ln(\cos(4x))\)

Solution.
\begin{align*} r'(x) \amp = \frac{1}{\cos(4x)} \cdot \frac{d}{dx}[\cos(4x)]\\ \amp = \frac{1}{\cos(4x)} \cdot -\sin(4x) \cdot \frac{d}{dx}[4x]\\ \amp = \frac{-\sin(4x)}{\cos(4x)}\cdot 4 \end{align*}

4.

\(f(t) = \arcsin(t+1)\)

Solution.
\begin{align*} f'(t) \amp = \frac{1}{\sqrt{1-(t+1)^2}} \cdot \frac{d}{dt}[t+1]\\ \amp = \frac{1}{\sqrt{1-(t+1)^2}} \end{align*}

5.

\(f(x) = \dfrac{x^3+2x}{x^2}\)

Solution.
\begin{align*} f'(x) \amp = \frac{d}{dx}\left[ x + 2x^{-1}\right]\\ \amp = 1-2x^{-2} \end{align*}

6.

\(g(\theta) = \tan^3(4\theta)\)

Solution.
\begin{align*} g'(\theta) \amp = \frac{d}{d\theta}\left[(\tan(4\theta))^3\right]\\ \amp = 3\tan^2(4\theta)\cdot \frac{d}{d\theta}[\tan(4\theta)]\\ \amp = 3\tan^2(4\theta) \cdot \sec^2(4\theta) \cdot \frac{d}{d\theta}[4\theta]\\ \amp = 3\tan^2(4\theta) \cdot \sec^2(4\theta) \cdot 4 \end{align*}

7.

\(h(t) = \dfrac{3t+5}{t^2+2}\)

Solution.
\begin{align*} h'(t) \amp = \frac{(t^2+2)\cdot \frac{d}{dt}[3t+5] - (3t+5)\cdot \frac{d}{dt}[t^2+2]}{(t^2+2)^2}\\ \amp = \frac{(t^2+2)\cdot 3 - (3t+5) \cdot 2t}{(t^2+2)^2} \end{align*}

8.

\(y = 4^x \sin(2x)\)

Solution.
\begin{align*} \frac{dy}{dx} \amp = 4^x \cdot \frac{d}{dx}[\sin(2x)] + \sin(2x) \cdot \frac{d}{dx}[4^x]\\ \amp = 4^x\cdot \cos(2x)\cdot 2 + \sin(2x) \cdot \ln(4)\cdot 4^x \end{align*}