Skip to main content

Section 1.5 Practice Gateway Exam 5

The use of a calculator or any computer algebra system is not permitted on this test. No partial credit is available. A score of at least 7 correct is required to pass this gateway.

Find the derivative of each of the following functions:

Exercises Exercises

1.

\(y = 7x^{6} + 2x^{3.1}-4x+ \dfrac{5}{x^6}\)

Solution.
\begin{align*} \frac{dy}{dx} \amp = \frac{d}{dx}[7x^6 + 2x^{3.1} - 4x + 5x^{-6}]\\ \amp = 42x^5 + 6.2x^{2.1} - 4 - 30x^{-7} \end{align*}

2.

\(g(x) = x^4 \ln(6x^5)+ 10e^3\)

Solution.
\begin{align*} g'(x) \amp = x^4 \cdot \frac{d}{dx}[\ln(6x^5)] + \ln(6x^5) \cdot \frac{d}{dx}[x^4]\\ \amp = x^4 \cdot \frac{1}{6x^5} \cdot \frac{d}{dx}[6x^5] + \ln(6x^5)\cdot 4x^3\\ \amp = x^4 \cdot \frac{1}{6x^5} \cdot 30x^4 + \ln(6x^5)\cdot 4x^3 \end{align*}

3.

\(r(\theta) = 8(\sin(4\theta))^{-10}\)

Solution.
\begin{align*} r'(\theta) \amp = -80 (\sin(4\theta))^{-11}\cdot \frac{d}{d\theta}[\sin(4\theta)]\\ \amp = -80 (\sin(4\theta))^{-11}\cdot \cos(4\theta) \cdot \frac{d}{d\theta}[4\theta]\\ \amp = -80 (\sin(4\theta))^{-11}\cdot \cos(4\theta) \cdot 4 \end{align*}

4.

\(f(x) = \ln(6) 7^{100x}\)

Solution.
\begin{align*} f'(x) \amp = \ln(6) \cdot \ln(7)\cdot 7^{100x}\cdot \frac{d}{dx}[100x]\\ \amp = \ln(6)\cdot \ln(7)\cdot 7^{100x}\cdot 100 \end{align*}

5.

\(f(w) = \dfrac{w^6}{\arcsin(w)}\)

Solution.
\begin{align*} f'(w) \amp = \frac{\arcsin(w)\cdot \frac{d}{dw}[w^6] - w^6 \cdot \frac{d}{dw}[\arcsin(w)]}{(\arcsin(w))^2}\\ \amp = \cfrac{\arcsin(w)\cdot (6w^5) - w^6 \cdot \frac{1}{\sqrt{1-w^2}}}{(\arcsin(w))^2} \end{align*}

6.

\(g(t) = \arctan(7t^4)\)

Solution.
\begin{align*} g'(t) \amp = \frac{1}{1+(7t^4)^2} \cdot \frac{d}{dt}[7t^4]\\ \amp = \frac{1}{1+(7t^4)^2} \cdot 28t^3 \end{align*}

7.

\(h(z) = \cos(60z^2 + 100z)\)

Solution.
\begin{align*} h'(z) \amp = -\sin(60z^2 + 100z) \cdot \frac{d}{dz}[60z^2+100z] \\ \amp = -\sin(60z^2 + 100z) \cdot (120z+100) \end{align*}

8.

\(h(x) = 6e^{5x} + \sqrt{x^5-6x} \)

Solution.
\begin{align*} h'(x) \amp = \frac{d}{dx}\left[6e^{5x} + (x^5-6x)^{1/2}\right]\\ \amp = 6e^{5x} \cdot \frac{d}{dx}[5x] + \frac{1}{2}(x^5-6x)^{-1/2} \cdot \frac{d}{dx}[x^5-6x]\\ \amp = 6e^{5x} \cdot 5 + \frac{1}{2}(x^5-6x)^{-1/2}\cdot (5x^4-6) \end{align*}