Skip to main content

Section 2.2 Practice Gateway Exam 2

The use of calculators or any computer algebra system is not permitted on this test. No partial credit will be awarded. A score of at least 7 correct is required to pass this gateway.

Compute each of the following integrals.

Exercises Exercises

1.

(3x5+1x3+5)dx

Solution.
(3x5+1x3+5)dx=(3x5+x3+5)dx=3x66+x22+5x+C

2.

2x3x2+4dx

Solution.

Use substitution with u=3x2+4 and du=6xdx, so 16du=xdx:

2x3x2+4dx=2161udu=13ln|u|+C=13ln|3x2+4|+C

3.

x2e2x3dx

Solution.

Use subsitution with u=2x3 and du=6x2dx, so 16du=x2dx:

x2e2x3dx=16eudu=16eu+C=16e2x3+C

4.

10(x2)(x+5)dx

Solution.

First decompose the integrand into partial fractions:

10(x2)(x+5)=Ax2+Bx+5

This yields

10=A(x+5)+B(x2).

Plug in x=2 to solve for A and x=5 to solve for B:

10=7A+0A=107
10=07BB=107

Now perform the integration:

10(x2)(x+5)dx=(1071x21071x+5)dx=107ln|x2|107ln|x+5|+C

5.

x3+x+2x2dx

Solution.
x3+x+2x2dx=(x+x1+2x2)dx=x22+ln|x|+2x11+C=x22+ln|x|2x+C

6.

tsin(t)dt

Solution.

Use integration by parts with

u=tdv=sin(t)dtdu=dtv=cos(t)

Then

tsin(t)dt=t(cos(t))cos(t)dt=tcos(t)+cos(t)dt=tcos(t)+sin(t)+C

7.

5x2cos(2x3)dx

Solution.

Use substitution with u=2x3 and du=6x2dx, so 16du=x2dx:

5x2cos(2x3)dx=516cos(u)du=56sin(u)+C=56sin(2x3)+C

8.

1z+8dz

Solution.

Use substitution with u=z+8 and du=dz:

1z+8dz=1udu=u1/2du=u1/21/2+C=2(z+8)1/2+C